Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
J Pediatr ; 265: 113808, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37923198

RESUMO

OBJECTIVE: To assess the diagnostic yield of exome sequencing (ES) in pediatric cardiomyopathy. STUDY DESIGN: A single-institution, retrospective chart review of 91 patients with pediatric cardiomyopathy was performed. While pediatric cardiomyopathy is often genetic in nature, no genetic test is recommended as standard of care. All our patients were diagnosed with cardiomyopathy and evaluated by a medical geneticist between January 2010 through September 2022. Demographic information and clinical data were abstracted. RESULTS: Of 91 patients with pediatric cardiomyopathy, 36 (39.6%) received a diagnosis by ES. Twenty-two (61.1%) of these diagnoses would have been missed on cardiac multigene panel testing. The diagnostic yield for cardiomyopathy presenting under 1 year of age was 38.3%, while the yield for patients over 1 year of age was 41.9%. CONCLUSIONS: ES has a high diagnostic yield in pediatric cardiomyopathy compared with a gene panel. Over 60% of patients with diagnosis by ES would not have received their molecular genetic diagnosis if only multigene panel testing was sent. Diagnostic yield did not vary significantly between the subtypes of cardiomyopathy and patient age groups, highlighting the likely clinical utility of ES for all pediatric cardiomyopathy patients.


Assuntos
Cardiomiopatias , Médicos , Humanos , Criança , Sequenciamento do Exoma , Estudos Retrospectivos , Testes Genéticos , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética
3.
Ann Clin Transl Neurol ; 10(8): 1442-1455, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37483011

RESUMO

OBJECTIVE: FHL1-related reducing body myopathy is an ultra-rare, X-linked dominant myopathy. In this cross-sectional study, we characterize skeletal muscle ultrasound, muscle MRI, and cardiac MRI findings in FHL1-related reducing body myopathy patients. METHODS: Seventeen patients (11 male, mean age 35.4, range 12-76 years) from nine independent families with FHL1-related reducing body myopathy underwent clinical evaluation, muscle ultrasound (n = 11/17), and lower extremity muscle MRI (n = 14/17), including Dixon MRI (n = 6/17). Muscle ultrasound echogenicity was graded using a modified Heckmatt scale. T1 and STIR axial images of the lower extremity muscles were evaluated for pattern and distribution of abnormalities. Quantitative analysis of intramuscular fat fraction was performed using the Dixon MRI images. Cardiac studies included electrocardiogram (n = 15/17), echocardiogram (n = 17/17), and cardiac MRI (n = 6/17). Cardiac muscle function, T1 maps, T2-weighted black blood images, and late gadolinium enhancement patterns were analyzed. RESULTS: Muscle ultrasound showed a distinct pattern of increased echointensity in skeletal muscles with a nonuniform, multifocal, and "geographical" distribution, selectively involving the deeper fascicles of muscles such as biceps and tibialis anterior. Lower extremity muscle MRI showed relative sparing of gluteus maximus, rectus femoris, gracilis, and lateral gastrocnemius muscles and an asymmetric and multifocal, "geographical" pattern of T1 hyperintensity within affected muscles. Cardiac studies revealed mild and nonspecific abnormalities on electrocardiogram and echocardiogram with unremarkable cardiac MRI studies. INTERPRETATION: Skeletal muscle ultrasound and muscle MRI reflect the multifocal aggregate formation in muscle in FHL1-related reducing body myopathy and are practical and informative tools that can aid in diagnosis and monitoring of disease progression.


Assuntos
Meios de Contraste , Doenças Musculares , Humanos , Masculino , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Proteínas Musculares , Gadolínio , Músculo Esquelético/diagnóstico por imagem , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM/genética
4.
Am J Med Genet A ; 191(8): 2149-2155, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212523

RESUMO

SRRM2-related neurodevelopmental disorder is a recently described genetic diagnosis caused by loss-of-function variants in SRRM2. In order to understand the clinical spectrum of SRRM2-related neurodevelopmental disorder, we performed a retrospective exome data and clinical chart review at a single tertiary children's hospital, Children's Hospital of Philadelphia (CHOP). Among approximately 3100 clinical exome sequencing cases performed at CHOP, we identified three patients with SRRM2 loss-of-function pathogenic variants, in addition to one patient previously described in the literature. Common clinical features include developmental delay, attention deficit hyperactivity disorder, macrocephaly, hypotonia, gastroesophageal reflux, overweight/obesity, and autism. While developmental disabilities are commonly seen in all individuals with SRRM2 variants, the degree of developmental delay and intellectual disability is variable. Our data suggest that SRRM2-related neurodevelopmental disorder can be identified in 0.3% of individuals with developmental disabilities receiving exome sequencing.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos Retrospectivos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hospitais , Proteínas de Ligação a RNA
5.
Med ; 4(4): 245-251.e3, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36905929

RESUMO

BACKGROUND: Utrophin, a dystrophin homolog, is consistently upregulated in muscles of patients with Duchenne muscular dystrophy (DMD) and is believed to partially compensate for the lack of dystrophin in dystrophic muscle. Even though several animal studies support the idea that utrophin can modulate DMD disease severity, human clinical data are scarce. METHODS: We describe a patient with the largest reported in-frame deletion in the DMD gene, including exons 10-60 and thus encompassing the entire rod domain. FINDINGS: The patient presented with an unusually early and severe progressive weakness, initially suggesting congenital muscular dystrophy. Immunostaining of his muscle biopsy showed that the mutant protein was able to localize at the sarcolemma and stabilize the dystrophin-associated complex. Strikingly, utrophin protein was absent from the sarcolemmal membrane despite the upregulation of utrophin mRNA. CONCLUSIONS: Our results suggest that the internally deleted and dysfunctional dystrophin lacking the entire rod domain may exert a dominant-negative effect by preventing upregulated utrophin protein from reaching the sarcolemmal membrane and thus blocking its partial rescue of muscle function. This unique case may set a lower size limit for similar constructs in potential gene therapy approaches. FUNDING: This work was supported by a grant from MDA USA (MDA3896) and by grant number R01AR051999 from NIAMS/NIH to C.G.B.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Distrofina/genética , Distrofina/metabolismo , Utrofina/genética , Utrofina/metabolismo , Utrofina/uso terapêutico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Músculos/metabolismo , Músculos/patologia , Sarcolema/metabolismo , Sarcolema/patologia
6.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586412

RESUMO

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genética
7.
BMC Med Inform Decis Mak ; 22(Suppl 2): 198, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902925

RESUMO

BACKGROUND: Clinical phenotype information greatly facilitates genetic diagnostic interpretations pipelines in disease. While post-hoc extraction using natural language processing on unstructured clinical notes continues to improve, there is a need to improve point-of-care collection of patient phenotypes. Therefore, we developed "PheNominal", a point-of-care web application, embedded within Epic electronic health record (EHR) workflows, to permit capture of standardized phenotype data. METHODS: Using bi-directional web services available within commercial EHRs, we developed a lightweight web application that allows users to rapidly browse and identify relevant terms from the Human Phenotype Ontology (HPO). Selected terms are saved discretely within the patient's EHR, permitting reuse both in clinical notes as well as in downstream diagnostic and research pipelines. RESULTS: In the 16 months since implementation, PheNominal was used to capture discrete phenotype data for over 1500 individuals and 11,000 HPO terms during clinic and inpatient encounters for a genetic diagnostic consultation service within a quaternary-care pediatric academic medical center. An average of 7 HPO terms were captured per patient. Compared to a manual workflow, the average time to enter terms for a patient was reduced from 15 to 5 min per patient, and there were fewer annotation errors. CONCLUSIONS: Modern EHRs support integration of external applications using application programming interfaces. We describe a practical application of these interfaces to facilitate deep phenotype capture in a discrete, structured format within a busy clinical workflow. Future versions will include a vendor-agnostic implementation using FHIR. We describe pilot efforts to integrate structured phenotyping through controlled dictionaries into diagnostic and research pipelines, reducing manual effort for phenotype documentation and reducing errors in data entry.


Assuntos
Registros Eletrônicos de Saúde , Sistemas Automatizados de Assistência Junto ao Leito , Criança , Documentação , Humanos , Processamento de Linguagem Natural , Software
8.
Pediatrics ; 150(1)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642503

RESUMO

BACKGROUND AND OBJECTIVES: Telemedicine may increase access to medical genetics care. However, in the pediatric setting, how telemedicine may affect the diagnostic rate is unknown, partially because of the perceived importance of the dysmorphology physical examination. We studied the clinical effectiveness of telemedicine for patients with suspected or confirmed genetic conditions. METHODS: We conducted a retrospective cohort study of outpatient encounters before and after the widespread implementation of telemedicine (N = 5854). Visit types, diagnoses, patient demographic characteristics, and laboratory data were acquired from the electronic health record. Patient satisfaction was assessed through survey responses. New molecular diagnosis was the primary end point. RESULTS: Patients seen by telemedicine were more likely to report non-Hispanic White ancestry, prefer to speak English, live in zip codes with higher median incomes, and have commercial insurance (all P < .01). Genetic testing was recommended for more patients evaluated by telemedicine than in person (79.5% vs 70.9%; P < .001). Patients seen in person were more likely to have a sample collected, resulting in similar test completion rates (telemedicine, 51.2%; in person, 55.1%; P = .09). There was no significant difference in molecular diagnosis rate between visit modalities (telemedicine, 13.8%; in person, 12.4%; P = .40). CONCLUSIONS: Telemedicine and traditional in-person evaluation resulted in similar molecular diagnosis rates. However, improved methodologies for remote sample collection may be required. This study reveals the feasibility of telemedicine in a large academic medical genetics practice and is applicable to other pediatric specialties with perceived importance of physical examination.


Assuntos
Telemedicina , Criança , Humanos , Satisfação do Paciente , Estudos Retrospectivos , Inquéritos e Questionários , Telemedicina/métodos , Resultado do Tratamento
10.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065284

RESUMO

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Assuntos
Exoma , Patologia Molecular , Criança , Exoma/genética , Humanos , Mutação , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos
11.
Brain ; 144(9): 2722-2731, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34581780

RESUMO

Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms. Here we report seven individuals in six families from different ethnic backgrounds with biallelic variants in MLIP, which encodes the muscular lamin A/C-interacting protein, MLIP. Patients presented with a consistent phenotype characterized by mild muscle weakness, exercise-induced muscle pain, variable susceptibility to episodes of rhabdomyolysis, and persistent basal elevated serum creatine kinase levels. The biallelic truncating variants were predicted to result in disruption of the nuclear localizing signal of MLIP. Additionally, reduced overall RNA expression levels of the predominant MLIP isoform were observed in patients' skeletal muscle. Collectively, our data increase the understanding of the genetic landscape of rhabdomyolysis to now include MLIP as a novel disease gene in humans and solidifies MLIP's role in normal and diseased skeletal muscle homeostasis.


Assuntos
Proteínas Correpressoras/genética , Creatina Quinase , Variação Genética/genética , Doenças Musculares/genética , Mialgia/genética , Proteínas Nucleares/genética , Rabdomiólise/genética , Adolescente , Criança , Pré-Escolar , Creatina Quinase/sangue , Feminino , Humanos , Masculino , Doenças Musculares/sangue , Doenças Musculares/diagnóstico por imagem , Mialgia/sangue , Mialgia/diagnóstico por imagem , Rabdomiólise/sangue , Rabdomiólise/diagnóstico por imagem , Adulto Jovem
12.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570182

RESUMO

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Assuntos
Doença Aguda , Doenças Genéticas Inatas , Sequenciamento Completo do Genoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Avaliação de Resultados em Cuidados de Saúde
13.
Clin Genet ; 100(2): 187-200, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955014

RESUMO

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Assuntos
Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Deficiência Intelectual/etiologia , Proteínas Repressoras/genética , Anormalidades Dentárias/etiologia , Anormalidades Múltiplas/genética , Adolescente , Doenças do Desenvolvimento Ósseo/genética , Criança , Pré-Escolar , Face/anormalidades , Facies , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Anormalidades Dentárias/genética , Adulto Jovem
14.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33755597

RESUMO

Troponin C (TnC) is a critical regulator of skeletal muscle contraction; it binds Ca2+ to activate muscle contraction. Surprisingly, the gene encoding fast skeletal TnC (TNNC2) has not yet been implicated in muscle disease. Here, we report 2 families with pathogenic variants in TNNC2. Patients present with a distinct, dominantly inherited congenital muscle disease. Molecular dynamics simulations suggested that the pathomechanisms by which the variants cause muscle disease include disruption of the binding sites for Ca2+ and for troponin I. In line with these findings, physiological studies in myofibers isolated from patients' biopsies revealed a markedly reduced force response of the sarcomeres to [Ca2+]. This pathomechanism was further confirmed in experiments in which contractile dysfunction was evoked by replacing TnC in myofibers from healthy control subjects with recombinant, mutant TnC. Conversely, the contractile dysfunction of myofibers from patients was repaired by replacing endogenous, mutant TnC with recombinant, wild-type TnC. Finally, we tested the therapeutic potential of the fast skeletal muscle troponin activator tirasemtiv in patients' myofibers and showed that the contractile dysfunction was repaired. Thus, our data reveal that pathogenic variants in TNNC2 cause congenital muscle disease, and they provide therapeutic angles to repair muscle contractility.


Assuntos
Cálcio , Simulação de Dinâmica Molecular , Contração Muscular , Miotonia Congênita , Sarcômeros , Troponina C , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Humanos , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Sarcômeros/química , Sarcômeros/genética , Sarcômeros/metabolismo , Troponina C/química , Troponina C/genética , Troponina C/metabolismo
15.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
16.
Am J Med Genet A ; 185(1): 228-233, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103328

RESUMO

The NatA N-acetyltransferase complex is important for cotranslational protein modification and regulation of multiple cellular processes. The NatA complex includes the core components of NAA10, the catalytic subunit, and NAA15, the auxiliary component. Both NAA10 and NAA15 have been associated with neurodevelopmental disorders with overlapping clinical features, including variable intellectual disability, dysmorphic facial features, and, less commonly, congenital anomalies such as cleft lip or palate. Cardiac arrhythmias, including long QT syndrome, ventricular tachycardia, and ventricular fibrillation were among the first reported cardiac manifestations in patients with NAA10-related syndrome. Recently, three individuals with NAA10-related syndrome have been reported to also have hypertrophic cardiomyopathy (HCM). The general and cardiac phenotypes of NAA15-related syndrome are not as well described as NAA10-related syndrome. Congenital heart disease, including ventricular septal defects, and arrhythmias, such as ectopic atrial tachycardia, have been reported in a small proportion of patients with NAA15-related syndrome. Given the relationship between NAA10 and NAA15, we propose that HCM is also likely to occur in NAA15-related disorder. We present two patients with pediatric HCM found to have NAA15-related disorder via exome sequencing, providing the first evidence that variants in NAA15 can cause HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Criança , Facies , Predisposição Genética para Doença , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Atrofia Muscular/complicações , Atrofia Muscular/genética , Atrofia Muscular/patologia , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Pediatria , Sequenciamento do Exoma
17.
Am J Med Genet A ; 185(3): 687-694, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369054

RESUMO

Ciliopathy syndromes are a diverse spectrum of disease characterized by a combination of cystic kidney disease, hepatobiliary disease, retinopathy, skeletal dysplasia, developmental delay, and brain malformations. Though generally divided into distinct disease categories based on the pattern of system involvement, ciliopathy syndromes are known to display certain phenotypic overlap. We performed next-generation sequencing panel testing, clinical exome sequencing, and research-based exome sequencing reanalysis on patients with suspected ciliopathy syndromes with additional features. We identified biallelic pathogenic variants in BBS1 in a child with features of cranioectodermal dysplasia, and biallelic variants in BBS12 in a child with the clinical stigmata of Bardet-Biedl syndrome, but also with anal atresia. We additionally identified biallelic pathogenic variants in WDR35 and DYNC2H1 in children with predominant liver disease and ductal plate malformation without skeletal dysplasia. Our study highlights the phenotypic and genetic diversity of ciliopathy syndromes, the importance of considering ciliopathy syndromes as a disease-spectrum and screening for all associated complications in all patients, and describes exclusive extra-skeletal manifestations in two classical skeletal dysplasia syndromes.


Assuntos
Anormalidades Múltiplas/patologia , Chaperoninas/genética , Ciliopatias/patologia , Dineínas do Citoplasma/genética , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Anormalidades Múltiplas/genética , Adulto , Criança , Pré-Escolar , Ciliopatias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Prognóstico
18.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442410

RESUMO

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Craniossinostoses/genética , Transtornos do Neurodesenvolvimento/genética , Osteocondroma/genética , Fatores de Transcrição SOXD/genética , Transporte Ativo do Núcleo Celular , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Simulação por Computador , Feminino , Variação Estrutural do Genoma/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico , RNA-Seq , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/metabolismo , Síndrome , Transcrição Gênica , Transcriptoma , Translocação Genética/genética
19.
Pediatrics ; 145(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32102930

RESUMO

Next-generation sequencing has revolutionized the diagnostic process, making broadscale testing affordable and applicable to almost all specialties; however, there remain several challenges in its widespread implementation. Barriers such as lack of infrastructure or expertise within local health systems and complex result interpretation or counseling make it harder for frontline clinicians to incorporate genomic testing in their existing workflow. The general population is more informed and interested in pursuing genetic testing, and this has been coupled with the increasing accessibility of direct-to-consumer testing. As a result of these changes, primary care physicians and nongenetics specialty providers find themselves seeing patients for whom genetic testing would be beneficial but managing genetic test results that are out of their scope of practice. In this report, we present a practical and centralized approach to providing genomic services through an independent, enterprise-wide clinical service model. We present 4 years of clinical experience, with >3400 referrals, toward designing and implementing the clinical service, maximizing resources, identifying barriers, and improving patient care. We provide a framework that can be implemented at other institutions to support and integrate genomic services across the enterprise.


Assuntos
Atenção à Saúde/organização & administração , Testes Genéticos , Pediatria , Criança , Genômica , Humanos
20.
Genet Med ; 22(2): 389-397, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina/genética , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Genótipo , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...